Radar remote sensing of rainfall
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A bit about observations

]
TU Delft ET4169 - Microwaves, Radar and Remote Sensing December 2013 2




How to describe an apple just by
looking at it?

An apple is round and is green and/or red
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And now backwards!

It is round, red and/or green, and therefore an apple?
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We need a priori knowledge

When we know we are looking at apples, then we can we describe its properties:
it is a nice round, red and/or green apple.
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In terms of observations

N
— Direct problem
| > 4 Ob] ect w1th known propertles > ?
e \ —_— / — ’
In L= - S observation
—-— - \
| >4 99999999999999999999 >
Inverse problem
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The complexity of the inverse
problem

* How to describe the characteristics of an object
e With a limited number of observed parameters

» With sufficient accuracy?
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What do we measure with a radar?

Signals
amplitude
phase
polarization
frequency

Without interpretation meaningless parameters!

For remote sensing: we want to derive the physical properties of system earth
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How can we use EM-waves?

Electric field s frequency
polarization _
E/ I favelength (distance between
successive wave peaks)
Distance }
Magnetic field / gi | mplitude
phase

—

Veloc| of light

Position/velocity shape of object | (1] type of object || sensitivity

passing of a fixed point)
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Signals and meaning

Inverse problem

In e eem === TN - observation

| > O 222222299222222222972 I >
~~__I—\\___’,~~_o
What are the physical properties i
EM-waves of the object? EM-waves
Power Power
Voltage Voltage
Phase Phase
Polarization Polarization
model
F (amplitude, phase, polarization, frequency)
] _ .
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Applications

F (amplitude, phase, polarization, frequency)

EM-waves
Power Rainfall, clouds, wind, greenhouse gases
Voltage ‘ Sea temperature, soil moisture, vegetation
Phase Ocean currents, polar ice, glaciers
Polarization 1
EM-waves
Power -
owe =) Questions:
Voltage L o
how much rain, ice, gas etc”
Phase
Polarization
z | |
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Signals and meaning, 2

out = F(x,y,z)

What is the accuracy of ‘out’?

2 2 2 2
Aout _ AF(x,y,z)Ax N AF(x,y,z) My = AF(x,y,z)AZ
out X y z
So we must know the accuracy of x,y,z
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aout a,BP'B .

out = aP” —>aout =affP"'AP —

_IB_

out aP’
A}} 1/ aout)
P ,ﬁ\out y
Needed accuracy of observed power Required accuracy of parameter
of interest

%
TUDelft ET4169 - Microwaves, Radar and Remote Sensing December 2013 13




Example of model: weather radar

Radar reflectivity factor Z

\

Z=aBb

o
(=)

Rainfall rate R
a,b constants

5-M Distance from Radar [m]
=
n o

L &

| b~1.5:
| B b | If we want to know R
N T ISR R Within 10% then Z has to
i stance from Radarm 10 be measured within 15%
5 | |
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How to achieve the required
accuracy?

» Understand and quantify error sources
e Understand and quantify signal behaviour

e Reduce noise
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Back to the radar equation

Target

Path loss

- PGGA’Lo _CLo

B, (472')3R4 / R* \

Radar cross section:
target properties

Radar

System parameters
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Example: the target is a volume
filled with raindrops

A Radar cross-section of volume

/ Nl‘ot

Nm3
O, = Zak = Zal. Volume o  =n-Volume
I

K |
\ reflectivity
Summation over Summation over
complete volume cubic meter
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Radar equation for volume

scattering, 1
transmit
/ receive
| T 52 2
Volume = ZR @ dR

PthGrLS/I2 PthG,,LSﬂ,2 PthGrLSlz¢2dR
rec 3 ot 3 7 Volume = ) n

(47) R (47) R 647°R
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Radar equation for volume
scattering,?

2 2
p, = L9GLT i
647" R

]-Lsn =CLn

= /
Y

Deterministic:
Calibration of system
To reduce errors

A 4

Stochastic:
Signal processing to reduce errors
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Radar equation for volume
scattering,3

Since the target is of stochastic nature, we need more measurements
and integrate. The brackets denote time-average:

PG.G. A’
(7.~ PACE T v () ()

How do we know how long we have to average?

We have to know the variance of the signal: theory of signal statistics
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Signal statistics, time series,

N samples
Voltage Vinl,n=12,..N
- 1 .
Mean power P =WZV[H]V [n]
_p I
Variance var(P)=— > (1- Pl
N -
—2
Uncorrelated samples  p,[0]=1Ap,[/]1=0 (I#0)— var(P) = I;

%
TUDelft ET4169 - Microwaves, Radar and Remote Sensing December 2013 21




Estimation of mean power

The variance of the signal can be reduced with averaging

Q: How to determine the number of samples in advance?
A: We have to know the statistical properties of the signal.

Statistical distribution of power, voltage, phase
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Signal statistics for volume scattering;
one sample, many drops

Every drop j gives a complex voltage Vj
With amplitude and phase

Phase of V(t) uniformly distributed
From statistics: many particles > central limit theorem:
Gaussian distribution of real and imaginary part
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Statistical model of radar signal in
case of volume scattering

Ve)=1(1)+jO()

(1(1))=(0(t))=0

Var(lz(t)) = Var(Qz(z‘)) = o’
E(I(t)I(1,)) = E(0(1)O(t,)) =’ p, (¢)
E(1(t)0(t,)) = E(Qt)I(1,)) = 6, (t)

A N

]
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Statistical model of radar signal:
probability density functions

4 2
amplitude f(‘V‘) = @exp _Z‘Vl }
O . O

phase f(0)= L

27T
1 Py 1 (=P
power S (P) =1 p(Pj ! p(Pj
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Probability o

L@

density Rayleigh
functions / y
(@)
fa(®)
Known pdf’s:
_<
Known mean,
Variance etc 0 ®) 2” ?
1.
Exponential
\
0 © P

Fig. 5.33. Probability density function of (@) signal amplitude, (») signal phase, and {c) signal

power.
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Statistical moments of
voltage and power

—2

(P)=P;var(P)=P

<‘V‘> = G\/; var([V/|) =

4
AL
2

One sample

N samples

Ppl0]=1A p,[l]=0 (l¢0)—>var(P)_%
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What is correlation?

High correlation

~  — Moderate correlation

Received power

W Low correlation

v
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Predicted accuracy based on signal model

3~

Measure for turbulence in radar volume:
The lower , the higher the correlation
And the smaller the effect of integration

i Typical values for a weather radar
1r &

05}

ha
w
T

M2
1

Standard deviation of mean power estimate (dB)
o

0 50 100 150 200 250 300
Number of samples N

%
TUDelft ET4169 - Microwaves, Radar and Remote Sensing December 2013 29




Trade-off integration time

»:9»

Integration time ok

Integration time too long

The physical properties of the target may not change too much
during the integration time: the result becomes meaningless!
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Signal basics weather radar,1

raindrop

Incoming field

s 2 Er _ EoejZﬁ(rl—i—rz)

@ = 2:3(’”1""”2)_)%20 20 (rajr2)22ﬂ(vl+v2)=w:27zf

_2_7[ _2(v1+v2)
p="Fo =
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Signal basics weather radar,?2

vsin(6,)

The Doppler effect

\

Forward scatter:

RN ——

I Doppler shift is only representative for the velocity along the antenna beam I

%
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Signal basics weather radar,3

Maximum phase shift @, =*7

2y
Prax = 270 f1} = 2777To
V.= i—/l
Tmax 4]‘(!)

Maximum unambiguous Doppler velocity

Time between two samples

%
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Signal basics weather radar,4

dR
Scattering by N particles:
N

N
E,()=) E()=) ae™"
n=1 n=1

Doppler shift

E,

r’
C
dR < R

E, (1) =a,E, (t—z—Rj Ry

%
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Received

|
}):_%lan

N
= ZEr,n

DOWEr

2

| & 2
_Za

_|_

Signal basics weather radar,5

Za E (t—z—Rj e

incoherent

coherent

I

%Re<22a

J#l

t—z—RjE* (t—z—RJeﬂmﬁjt !
C O C

N

J
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Signal basics weather radar,6

Doppler information is coded in the signal phase:
a power measurement is not sufficient

complex processing is required to retrieve the particle speed

e.qg.fourier transforms, autocorrelation functions
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Basis of spectral processing
one radar cell, one distance

7r— N )
Z 12 | Zan (f)ejzﬁf"t; E (t —Z—Rj =1 for sakeof simplicity
c

n

Z()jd T[St

N
2 — t
i27( f =S )t
n+m a,e’ Vel

n
Pﬂ

ahj
—
>
N——
(|
N|—

N =

Pﬂ

¥ Nc_,i -
N

Q
3
—~~

~
~—~—"

&

~

N =

Mean amplitude of all
Scatterers with Doppler
Frequency Fm and ianejwffm)t 0
velocity Vm

~

Basis of fourier transform
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We obtain a spectrum of all frequencies

A Power

E,(f)

—— >
f Doppler frequency f
d

P = HE’O’ (f)‘zdf Total power

1
Ja :P—J‘f

tot

ad=JPLj(f—fd)2

tot

2
Emt ( f )‘ df Mean doppler frequency

E, ( f)‘zdf Doppler Width

%
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Repeat the procedure for all distances R

N\

spectro

500 -

gram of _the .received powe

T TR P o I

range
—

260

350 -

300 =

‘ 250

1501,

abuel

100

501

bt ‘ 3 st <, i
a0 100 180 200 WDD 350 400 450 a00
—_—)

Doppler frequency Doppler frequency

%
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Fast

Fourier
“rainDS.mat”, 1 Sequence of input amplitudes, [d@&aquence of nput phases, [degree] Transfoim File: “rainDS.mat“, 1 Spectrogram (vD,H),dB
T I-. T .'{ '120 T el “|- T T Te, CART
7000 Pl st ity 7000 150 TON0 Siiad st s Tk LS i v MC T , -
Gl h) 110 R U S 140
5000} - A i 6000 100 BO00F 130
:  |Field | [ ¢ S
© _ |strength 0 RN !
- H000F - g o4 b dgp - 5000 L 450 L H000F 120
ot : SRR ot ot
o o o
E $ES 5 E 1110
i . - 480 2 2
g 4000 = g 4000 n 7 4000 J100
- x S e
CamfEace il 110 S e S aom By o 19
= A = LA C Lt iR
o o o
: i 3 2 e .
2000 2000 2000F
-100 ‘ 70
. 50 Lgin
1000F 1000 1000F A0
A0 -150
L . 20
1002003000500 1002003000600
time, ms. 512 profiles time, ms. 512 profiles Doppler velocity, mis (FFT length 512 Measurement time: 14592 sec)
3 | |
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File: "rainDS.mat”, 1 Spectrogram (VD,H),dB

T

: 140
000F
| LS 140
qo0 B st et 0 BB O S ) 0 Further necessary steps
o [lidue ek | I'l, |Remove the noise
- oMU et Signal clipping at a certain threshold
2 110
8 40001
$ 1100 Remove clutter
faf e 1o Filter around v=0 m/s
Eﬂ i a0
.
T 000 M Calculate the total power, mean doppler
70 Frequency, and the spectral width
1000} - 60
T : e e e e 50
-6 42 0 2 4 i
Dopplervelocity, mis (FFT length 512, Measurement time: 1.4592 sec)
]
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File: "rainDS.mat”, 1 Spectrogram (VD,H),dB

6000 Bt At L DA e G 20 Gy — 6000 —
25000 Pt 1120 5000 | 1 sooof 1
=
o]

5 e 1110
S Ak 4000} 1 4000} .
3 4000 oo
’I. IR R E E
£ gp00 B 190 £ 3000} 1% 3000} ]
T i e g0
T 2000} . 2000} 1 2000} ]
: 70
100[]5_".-J-‘. &0 1000 1 1000} -
(o e 50 1 1 1 O —
5 . 5 120 140 160 180 s 4 2 0 2
Doppler velocity, mis (FFT length 512, Measurement time: 1 4592 sec) Reflectiity [dB] Mean Doppler velocity [ms ']
3 | |
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IDRA TU Delft IRCTR Drizzle radar

Specifications /,,f

 9.475 GHz central frequency /3 {f‘\ }

e FMCW with sawtooth modulation f/ i »q RJ«S\T

» transmitting alternately horizontal and vertical e
polarisation, receiving simultaneously the co- {/ s K jj
and the cross-polarised component f}&&\ -

» 20 W transmission power f{?\;kﬂ/&’k\_ )

o 102.4 ys — 3276.8 ps sweep time ;

e 2.5 MHz - 50 MHz Tx bandwidth
e 60 m -3 m range resolution
¢ 1.8° antenna half-power beamwidth

Reference

J. Figueras i Ventura: “Design of a High Resolution X-band
Doppler Polarimetric Weather Radar”, PhD Thesis, TU Delft,
20009. (online available at http://repository.tudelft.nl)

CESAR — Cabauw Experimental Site for Atmospheric Research

Near real-time display:
http://ftp.tudelft.nl/TUDelft/irctr-rse/idra
IDRA is mounted on
top of the 213 m high

meteorological tower. Processed and raw data available at:

http://data.3tu.nl/repository/collection:cabauw

Courtesy Otto

%
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The receied wer is related tot rainfall rate.

The question is: how?

R o T

Source: www.everythingweather.com

%
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First step: scattering by one particle

Forward scatter Radiation pattern scattered wave

® —
h\j“/ Side scatter

T T

Incident
EM-wave

%
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Incident power density
S, [W/m?]

Absorbed power P,

Definitions to describe scattering by one particle

Scattered power P

. . P
Absorption cross-section O, = <~

Scattering cross-section O = <~

Extinction cross-section O, =0,

]
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The definitions one step further:

Efficiency factors

l O \ O

Geometric cross-section of particle
Scattering in all directions

%
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_ S.0,
" 4rR*

S

Radar cross-section O b
cross-section of equivalent isotropic radiator with power P,

%
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Scattering by a homogeneous dielectric sphere
In a medium

Background medium

Normalized radius
A

C 2xr  2mwr [
E=¢ +j& = = \/;
| d A A
2r 8:722

permittivity &
refractive index n
wavelength in sphere 4 wavelength in background A,

%
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Scattering by a sphere is given by the Mie-formulas:

J(n,;()—z Z(2l+l)(\az\ +b[)

G (n,7) = ?2(21 +1)(Re(a, +5,))

Ca (na Z) — é/e (na ;() o é/s (na ;() (?:;:ﬁlc;irI:ISgiegzu:gri]?jn;ermittivity

2

2= (1, 2) = Zi i(—l)l(zz +1)(a, ~b))

%
TUDelft ET4169 - Microwaves, Radar and Remote Sensing January 2015 50




Example of radar Cross Section o

Monostatic radar cross section of a conducting sphere:

a .. radius of the sphere
A .. wavelength

n

|
|
|
c I .
ke g i . .
B | | Rayleigh region: a << A
@ | |
2 | I
@ E | | : .
S = | | Resonance / Mie region:
S o1HEl . | g —
© il S I e — «—
S = el | 2
£ Bl :Y 3 —>
v j = =
O _2"| & | = — <«
& = | | © —> /
= 0.01 creeping wave
© I 2 3 5 10 ping
% D mal\ specular reflection
c electrical size

Optical region: a >> A

Figure: D. Pozar, “Microwave Engineering”, 2" edition, Wiley.

%
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The Mie-formulation is exact for all particle sizes
and wavelengths
but quite intractable,
therefore: approximations!

Most common: rayleigh approximation

Particle small compared to wavelength
Small phase shift of wave inside particle

ny|<1

%
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Rayleigh scattering by a sphere

F
o
L
bt
[y
o
||
Sy
=
I
&=
|
e
&
ﬁ

rd kﬂl (&, — I} i i
@ fo.9) = 253V [E 5B

The scattered field
depends on the looking
direction and polarization
of the incoming field

p=oE  a=3sVie — 1)/ +2) _ _
v Dipole moment: the sphere acts like
polarizibility a dipo|e
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Physical interpretation Rayleigh approximation

Excited dipoles 4‘ ‘2 2
[ k" |a| cos™(0)

perpendicular

IZI parallel = 7"2
/ ] 4 2
Iy parallel . Izk ‘0[‘
perpendicular 7'2

plane of reference
(O Polarizibility of particle (~volume)

k Wave number

Unpolarized wave (/z=ly=l0):

41 |2 2
. ]pamllel T ]perpendicular . IOk ‘a‘ (1 + COS (9))
unpolarized ~— o 2
2 4
% . |
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Physical interpretation Rayleigh approximation

Dipole

Side view
Dipole field distribution

I parallel

I perpendicular

/\ Helicopter view
b

e e I perpendicular

%
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The Rayleigh fields lead to the following cross-sections:

2 5 2
Js R 3 4 o 3 14 These cross-sections
;Z. 5 3 result from integration
A7, 7D of the scattered-field
O,=—=/X Im(—K) = —Im(—K) intensities over space
3
T A
5 2
2 612 ‘K ‘ 6
o, =AYy ‘K ‘ =———0D
A
2
n -1 &-1
K = =

]
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The summation of fields from different scatterers

27y

¢o ¢o +—

>
r—rcos\
¢0+%cos (6)
: 2
E =E+FE =E (1+eXp(]A¢)) = A¢= ;W (1-cos(0))
1

0=0-> Etot — 2E1 Independent of separation between particles

Forward scattering is always coherent: constructive interference
Scattering in other directions is always (partially) incoherent:
(partially) destructive interference: less signal

%
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In case of many dipoles with random position:

N .
. Jj279,
E ej2ﬁ¢n 5 () e
n

The scattering in the non-forward direction decreases,
and becomes very small in the backward direction

Now suppose we have a large sphere, compared to the wavelength:

we can regard the sphere as a collection of dipoles, which means we get
a radiation pattern. The consequences can be seen in the following
Examples>

]
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[® Mie scattering: Water in a vacuum

File Wiew Advanced wWindow Help

— Drop size

R adiuz [xm]

— Intenzity scale — Light zource
Hew plat = Eo
L Fomk 5
" Logarithmic ik un
0 - —Angle scale
verpia & Linear Minirmum angle
]
b awirnLin M awirum angle
IAutomatic LI | 180
. FimiraLim Angular resolution
Exit

Jo [

—

]

f+ Monodisperse
i Digperse

~ Light
Murmber of

wavelengths I-I j‘

wavelength [4m] in vacuo
I 100 I.R.
Refractive index

Real Imaginary
20369399 I 4.60E-0
Palarization

IAII 3 vl

Perpendicular polarization

Parallel polarization

Linear scale

30

Mie -

|Intensity v, scattering angle j

Restore defaults |
Infarmation OM |

Unpolarized

Small particle:
One dipole

0.51
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[ Mie scattering: Water in a vacuum !H
File View Advanced Window Help

— Intenzity scale — Light zource — Drop zize — Light W
I ) MNurmber of Iﬁ [ hd
Wz plnt . & Poink " Sun Radiuz [urm] wavelengths L ~
™ Logarithric - -
— Angle scale I 1 IlntenS|t_l,l v, zcattening angle ﬂ
Overplat & Linear Mirirurm angle ‘wavelength [um] in vacuo

I 0 f+ Monodizperse I 10 LR.
[CERT M aximum angle " Disperse E:L’r‘d“‘e index Restore defaults

Imaginary

I.-’-‘«utomahcll | 180 121a0000 | & 06E-02 Infarmation OM |
Esil P ininnLim Angular resolution Polarisation
u
o ~| jo1 | [n3 -

Perpendicular polarization

Parallel polarisation

Unpolarized
270

21 300

210 @ Particle size increased a bit:
Less energy scattered
backwards

180 0

150 el

120 &0

Linear scale o

0.53

%
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@ Mie scattering: Water in a vacuum

- 18]
File Wiew Advanced ‘Window Help
— Intensity scale

— Light source — Dirop size — Light -
) Mumber of lﬁ e 2
New plot  Loattui Radius [um) wavelengths ! s
ogarithmic - -
0 o —Angle scals I 1 IIntenS|t_l,J . zoattening angle ;I
werplol & Linear Minirmum angle W avelength [um] in vacuo
I i * Monodisperse I 5 LB.
MasimaLim Masirmur angle  Disperse Refractive index . Festore defaults |
W - 150 Real Imaginary -
I ukornatic: ;I | 1350000 | 1.24E02 Information O |
. Minimum Angular rezolution Palansation
Exit
[0 -] o =] IAII ] vl

Perpendicular polarization

Parallel polarization

Unpolanzed
270
24 300
210 330
Large particle:
Even less scattering
180 0 backwards
150 30
120 E0
Linear scale 0

0.54
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[® Mie scattering: Water in a vacuum

- 15|
File Wiew Advanced ‘Window Help

— Intenzity scale

— Light zource — Drop size — Light i
Murmber of Iﬁ e hd
Wiz lekt oo  Sun Radius [um) wavelengths 1 ~
 Logarithmic - :
— Angle scale I 1 |Inten3|ty W, scattering angle ;l
Dverplot & Linear i sl ‘wiavelength [um] in vacuo
0 i+ Monodisperse I 1 LA.
W i Masimum angle ¢ Disperse Refractive index _ Restore defaults |
n - I—'ISD Real Irmaginary ]
fautomatic < 13266399 | 2.02E-06 ittt sten O |
Esit FimirmLirn Angular resolution Polarization
IU VI IU.1 vl I.Q.||3 VI

Perpendicular polarization

Parallel polarization

Unpolarized
270

249 300

o X Very large particle:
No scattering backwards

150 30

120 =i}

Linear scale i

058
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Mew plot

Owerplat

34

25

15

0.5

E it |

@ Mie scattering: Water in a vacuum

File Wiew Advanced ‘Window Help

- Intensity scale  Horizontal scale
% Logarithric
" Logarithmic " Linear
~ Radius
{+ Linear MirirmLrn (L)
| 1
I &L b sirnurm [um)
[#utomatic - | | 5000
tinimuim Step [um]
[0 [~ [1 =
Qext

~ Light

W avelength [um] in vacuo
[E
Riefractive index

Real Imaginamn

768200 I 281

MHumber of Iﬁ
wavelengths ! =

bie -

Iﬂextfﬂscaa’ﬁabs w. radius ;I

Restore defaults |

Qszca

Rayleigh region

wavelength

Radius [um]
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Radar Equation for Weather Radar

P

B EGtGr/lz 7Z'R2(92C‘. ZO_

a (472')3R4 | 1611123 unit volume

radar constant radar reflectivity factor z, purely a
property of the observed precipitation

Material property

]
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Radar Retlectivity Factor z

§ mm? —> spans over a large range; to compress it into a
zZ= ZDi 3 smaller range of numbers, a logarithmic scale is
unit VOlume m p refe rred

ZlelogIO( - j(de)

Imm®/m’

To measure the reflectivity by the weather radar, we need to:

- know the radar constant C,

- measure the mean received power P,,

- measure the range R,

- and apply the radar equation for weather radars:

z=PCR’

]
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Raindrop-Size Distribution N(D)

z= Y DP= jDW(D)dD = %.6!
unit volume

where N(D) is the raindrop-size distribution that tells us how many drops
of each diameter D are contained in a unit volume, i.e. 1m3.

Often, the raindrop-size distribution is assumed to be exponential:

N(D)= N, exp(-AD)
/ \
Intercept parameter (m-3mm-1) slope parameter (mm-)

Marshall and Palmer (1948):

N, = 8000 m3mm-’
A =4.1-R02

with the rainfall rate R (mm/h)

raindrop-size distribution (m'3mm'1)

0 1 2 3 4 5 6
raindrop diameter D (mm)

%
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The raindrop size distribution is a model we need to interpret the
radar received power in terms of rainfall rate.

N(D) =N, exp(— AD)
/ \
Intercept parameter (m-3mm-1) slope parameter (mm-1)

%
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Reflectivity — Rainfall Rate Relations

reflectivity (mm®&m-3) z=[D°N (D)dD
D
liquid water content (mm3m=3) [.WC (D)dD
raindrop volume
rainfall rate (mm h-") R = ZID3V(QN(D)dD
6 D terminal fall velocity

v(D) =9.65 — 10.3¢706D
- the reflectivity measured by weather radars can be related to the

liquid water content as well as to the rainfall rate:
b
power-law relationship z=aR

the coefficients a and b vary due to changes in the raindrop-size
distribution or in the terminal fall velocity.

Often used as a first approximation is a=200and b = 1.6

%
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Importance of knowing dropsizes

Drop Size #/m~3 y 4 Water Volume
per cubic meter

1 mm 4096 36 dBZ 2144.6 mm3

4 mm 1 36 dBZ 33.5 mm?3

Raincell: cylinder 10km diameter, 2 km height: 157079632679 m”3
Difference: 314159265 liter or the average annual water consumption of
3315 ‘standard’ households in The Netherlands

%
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How constant is N(D)? .

In our model we assumed a fixed No.
How correct is that?

Here we see a histogram of LN I S R
independent observations of No

Apparantly our model is not that \ 1

i
accurate: No is not constant! e

Histograms of dropsize measurements "

So the question comes:
How can we measure No
with the radar? _

l

We can do this with polarization.

%
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Can Polarimetry add Information?

= yes, because hydrometeors are not spheres

- ice particles

formation

- hall

- raindrops

: ""‘-"http://commons.wikimedia.org/wiki/Category:Hail

%
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http://upload.wikimedia.org/wikipedia/commons/a/a5/Hail_-NOAA.jpg

Observed shapes of raindrops

" @ O O O °©

8.00 mm  7.35 5.8 5.30 3.45 2.70

%
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Axial ratio of raindrops versus size

E FYPFRIMFNT
5 e Axial ratio = a/b
osl e Perturbation Medsl
i | 1 | i | 1 ] 1 | I |
1 2 2 4 1 G 7
Diametar {0, mm
When the particle becomes oblate or prolate,
the backscattering becomes
polarization dependent:
axial ratio < 1: HH > VV, axial ratio > 1: HH < VV; axial ratio = 1: HH = VV
3 | |
TU Delft ET4169 - Microwaves, Radar and Remote Sensing January 2015 /3




Measurement Principle

7
-

AT 7 transmit

Reflectivity Zn, (dBZ)

Reflectivity Zny (dBZ)

o 10 Mg Type: 30 BasiHUN £2:30.43

s, Zin(BZ) 2., (dB2)

Height (km)
[¥X])

3
. ol
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Range (km) Range (km)
-5.0 5.0 15.0 25.0 35.0 45.0 55.0 -5.0 5.0 15.0 25.0 35.0 45.0 55.0

receive

Reflectivity Z.n (dBZ) 6

5,15 St 10 MaROS T30 BTEN K043

| Zn(@BZ) ¢ e 2, (dB2)

Reflectivity Zw (dBZ)

Height (km)
W
Height (km)
W

1
0 . il L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Range (km) Range (km)
-5.0 5.0 15.0 25.0 35.0 45.0 55.0 -5.0 5.0 15.0 25.0 35.0 45.0 55.0

Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra
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Measurement Principle

Az

T 7 - transmit

Reflectivity Zn, (dBZ)

Reflectivity Zny (dBZ)

V32818 Shom: 10 o3 Trpes20 Bass M .0,

Znw(@BZ) | ¢  Zy(@82)

Height (km)
W
Height (km)
[¥X])

1 1
0 5 10 15 20 25 30 35 0 35
Range (km)
> -5.0 5.0 15.0 25.0 35.0 45.0 55.0 -5.0 5.0 15.0 25.0 35.0 45.0 55.0
O |
q) Reflectivity Z.n (dBZ) Reflectivity Zw (dBZ)
o 6 5 st o s s o s 6 o e s s s 0
3 Z, (dBZ) 1 Z,, (dBZ)
vh 7 vV
4. ‘ 3 W
i [ 1

Height (km)
W

N

Height (km)
W

= Zdr

1 f 1
o, o M . differential
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 . .
Fange (k00 Ronge (km) reflectivity
—=5.0 5.0 15.0 25.0 35.0 45.0 55.0 —5.0 5.0 15.0 25.0 35.0 45.0 55.0

Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra
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Changing raindrop shape

: : Increasing polarization dependence
ITcreasmg rainfall

Reflectivity Zpy (dBZ) . \ . Differential Reflectivity Zg, (dB)

10 Map:03 Type:30 Basis:VHH A2:30.43 F 6 ] 2O\IB.1997 Time 1

S @

seraalaey il
~

saalae

Height (km)
w

]
FTPITITITIT IT

Height (km)
w

]
FTPTTITI T

':‘_. / Vi [ i i -
1 1 Y y—— “ah " NI”
0 , , , ] ' " : : , :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Range (km) Range (km)
T ———
-5.0 5.0 15.0 25.0 35.0 45.0 55.0 ~1.0 -0.2 0.7 1.5 2.3 3.2 4.0
Reflectivity Differential Reflectivity

Z,. =10log CR*P,, (dBZ) Z, = IOIOgI; (dB)

\%4%
Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra
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(D)dD

j )th
Z___[ o, (D)dD
Z, [N(D)o,(D)dD

N

dr

N(D) dD : Number of drops with diameter between D and D+dD

th,w . Radar cross-section for hh or vv polarization

]
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—3.672

N(D)dD=Ne "dD [N(D)o,, (D)dD

]
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D
Z,, = Nojexp(—3.67—J o, (D)dD > Do and Zhh gives No
D, |
Iexp -3.67— |0,,(D)dD
. D, _
/, = » Zdr gives Do
dr ( D )
[exp| -3.67-— |o,,(D)dD
. D

3
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Estimation of raindrop-size
distribution ~N(D)=N,exp(-AD)

/ \

intercept (m-=3mm-1) slope parameter (mm-1)

1. the differential reflectivity Z, depends only on the slope parameter A,
so /A can be directly estimated from Z,,

2. once that the slope parameter is known, the concentration N, can be
estimated in a second step from the reflectivity Z,,,

T T
| Reflectivity Zhh (dBZ):

uv]
o
I
[

|
Differential Reflectivity Zdr {dB)

Concentratlon Parameter 10Iogm(ND)
(N inmm’ "m )

o

| Median Volume Diameter DD {mm}

f\m/\(\

i v
Data: IDRA (TU Delft), Jordi Figueras i Ventura
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Observations and models revisited

z=|D*N(D)dD| +
D

R= % [D*WD)N(DYdD| = z=aR’

v(D): terminal fall speed of raindrops

The model we use to describe

v(D) = 9.65 — 10.3e706D

that part of reality we need to

N(D): dropsize distribution

transform radar observations
into rainfall rate

We used polarization to estimate the parameters of N(D).
We assumed a model for v(D).

Can we use v(D) to our

advantage?

]
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Recall the Doppler spectrum

Ptot = HE“” (f)‘zdf Total power

4 Power f d— L_'Af ‘Etot (f )‘de Mean doppler frequency
Et t ( f)‘z . B,
O-d O, = \/éj(f_fd )2 ‘Etot(f)‘zdf Doppler Width

1 »
I I "

f Doppler frequency f
d
The Doppler frequency is related to the speed

%
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When the radar looks upwards, the Doppler
frequency gives the fall speed

2v(D) . When we measure the
f= cos@; 8 =0 (to the vertical) Doppler spectrum,
we also measure dropsizes!
E, (f)df| =S, (v)dv| =S (D)aD|
d
Etot (f)‘ = Etot (f(v))d_; = Stzt (V)
dD
Sz‘Zt (V)‘ = StZt (V(D))E — Stft (D)
,‘ . .
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Recall the Doppler spectrum again

A Power )
S" (v ‘
’”’( ) Power due to
all particles with
speed between v and v+ay,
or size between D and D+dD
| ! 1] >
Vd Doppler speed A
2
P, =[|s" (v) dv P, =[|s” (D) ap
Vy = [v[s” () av ><D>d - [pls” (p)ap
tot tot
R (T o = [ [(0-D.Y |52 (o)
tot tot

]
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The Doppler spectrum
in terms of radar cross section

sZy(w)dv = N(D{v})om(D{v}) \ dv

3

So, if we measure the Doppler spectrum,
we can retrieve the dropsize distribution

Complication:
Doppler spectrum broadening by turbulence;
Shifted by mean wind

%
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Procedure

Measure the Doppler spectrum

Compare the observation with the model

Change the model parameters (No, Do for instance)
Minimize the difference between the model and observation

Results: dropsize distribution

plus impact of errors due to turbulence and wind

%
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Example: measured Doppler
spectrum plus curve fit

besees N,, = 1057 mm! m3

Du=1.13mm

1IZI -8 -8 -7
Doppler velocity [m/s]

Spectral Reflectivity [dB]

Courtesy Moisseev

]
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Can we combine Doppler and
polarization?

1- the fall speed depends on the particle size (Doppler)
2- the axial ratio depends on the particle size (polarization)

Model of axial ratio ) )
1 _pp L, _INDouD.paD [N (v, By
— = | - —> dr = = . -
b [N(D)o,(D,pYdD [ N'(v)c" (v, B)dv
% . |
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Combine the Doppler spectrum and

the Zdr
Doppler spectrum > Dropsize distribution
. . a
Dropsize distribution + Zdr | > z=1—ﬂ°D
« o O O o o
8.00 mm 7.35 5.8 5.30 3.45 2.70
5 | |
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0.25 | :

Example of retrieved drop shapes

Lees oblate

Occurence x 100 [%]

0_05_........'

Tara radar in The Netherlands

I I I I I I
: Thunderstorm,
July 23, 2004

Stratiform precipitation,
Septeni}er 19, 2{][}1

CSU-CHILL radar; in Colorado

More oblate

0
0.02 0.03 0.04

0.05 0.06 0.07 0.08 0.09 0.1 0.1

B [mm ]

Courtesy Moisseev
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The Zdr can also be used for
hydrometeor classification

Reflectivity Zpn (dBZ)

. " . Differential Reflectivity Zg, (dB)
4 | ice crystals s
| e melting layers
=4 melting layer: 4
< g 1ayere |
2 37 2 37
3, 2, "
1 1— e f"- l. - W, ot 1 ['llhu
0. B | i , , 0. , , . :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Range (km) Range (km)
T ——
-5.0 5.0 15.0 25.0 35.0 45.0 55.0 —-1.0 —-0.2 0.7 1.5 2.3 3.2 4.0
Reflectivity Differential Reflectivity
2p Phh
Z,, =10logCR*P,,(dBZ) Z, =10log="(dB)
' P
vy

Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra
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| Spectral differential reflectivity

% Delft TU Delft Climate Institute
TUDelft sy Remote Sensing of the Environment




Time height retlectivity

Reflectivity [dBZ] EL=45 deg.

10000 - - 40

9000 - -

8000 F=—— ==~ — S o]

7000~ -

6000 4 | dos

5000

Height [m]

4000

3000

2000+~

1000

| | | |
20:58 20:59 21:00 21:01
Time UTC

1':; UDelft feso TU Delft Climate Institute ACCEPT campaign, Cabauw, 12-10-2014

Technology Remote Sensing of the Environment




Spectrogram reflectivity

Spectral reflectivity [dBZ] MB - time: 20:59:01

T T T T 20
10000 - .
15
9000+ .
8000 - § 10
7000 1L s
‘E 6000 |
= - L 1o
-2 5000+ il .
T -
4000 s 4 k-5
3000+~ §
-10
2000+ .
1000 - . 15
0 1 | 1

-20 -15 -10 -5
Doppler velocity [m 5'1]
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Spectrogram differential reflectivity

sZdr [dB]- time: 20:59:01

T T T T T T 2
10000~ §
9000 f 15
8000 o .
7000 L
‘E 6000 i
£ : . o5
2 5000+ -
T
4000+ §
0
3000 i
2000~ § 05
1000/ |
0 ' -1

Doppler velocity [m 5'1]
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Ice crystal classification

spheroidal
orientation

52> 0
+

.

\@ M'

/e

i 1 172

sZ ,, slope categorisation number manb of lacal

ectrema
pristine  aga

o 1

Small particles Intermediate particles Large particles T
Plates, Dendiites, Rimed particles Graupel Hail \
Columns Aggregates 7 » Y > 2 1
: /
5 S (@ ) Lo
0.01 mm Size 10 mm + 4 + —s| 0 1
© 4 b .
52y~ 5Z,,<0 @
. 0 =No Data
i
% - TU Delft Climate Institute
TUDelft sy Remote Sensing of the Environment Courtesy Durfournet




Spectral-polarimetric classification

16:26: 09 16:40:26 —>Time UTC

: snmpllﬁed partlcle categorlzatlon
— aggregates

aggregates
dominant

pristine ice
dominant

no data

Be s nala B

Courtesy Durfournet
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Observation plus model leads to a better
understanding of rainfall formation

17:48:01

16:02:44

15:45:11
491

17:12:55  17:30:28

time
16:20:17 16:37:50 16:55:2
) ! J .:,,J..,. AR il 1 . :!‘:‘_ 6337

g rﬂ w L bl
- ol 8 i S i Mol

442

302 |

Ice and mixed- =
phase cloud

N
[{e
n

Range bin
%]
P
[s)]

«
9

Meltlng Iayer e :_. N g \ ! I. L "!3' l'3169
148 : ~ .-: ______ .y

99 ) ; H B . J 1 i | ~':;T . r R} 2113

B
Boundary layer '

1 437 873 1309 1745 2TET ] 2617 3053 3489 3925 4361 4797
echo § _

drizzle

rainfall

Courtesy Durfournet
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Short summary of remote sensing in
this course

» Radar signals: behaviour, estimation of appropriate descriptors,
accuracy

» The use of models for data interpretation

» Scattering by spheres

» Use scattering theory to define useful signal characteristics we
need for the observations

» The inverse problem

» Application to Doppler-polarimetric weather radar

%
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Composite KNMI C-band Radar

17:30 UTC Radar position v

L

- 5

2
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Clouds and rainfall

| Reflectivity, vertical bea:am (dBZ)
= I

= Reflectivity (dBZ) s D ] 40
~ = £ -
P . =45 3 i
5 = 5 20
E 10 \ 40 g,;?-p i -
i D <[ - 4

£ I - S 20 5 10 E 5 2
2 0 ~3 I
= -20
8 Doppler Velocity, verti Ial beam (ms'1) 10
% - 0 . 5 I pp ] ql =
B 10} g 4 ! |
& 10 0 10 9, I |

W-E Distance from Radar (km) I, | -10

w2 B
Differential reflectivity (dB) g 4 s
10 SAON S MST ‘D 2
ﬁ\ A * 4 0.5
5 N

L
=

S-N Distance from Radar (km)
o

Height (km)
= N W & O

-1I0 0 | 1b
W-E Distance from Radar (km)

I W 3TN W =

1446 1448 145 1452 1454 1456 14.58
03-Jan-2012, Time (UTC)

Courtesy of Tobias Otto, Yann Dufournet, Christine Unal
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